Kimley *Whorn*

KIMLEY-HORN AND ASSOCIATES, INC NC License #F-0102

MEMORANDUM

To:	Bill Judge, P.E. – City of Durham John Sandor, P.E. – NCDOT
From:	Earl Lewellyn, P.E. – Kimley-Horn and Associates, Inc.
Date:	December 18, 2024
Subject:	Massey Chapel Road Realignment – Traffic Memo

This analysis is prepared in conjunction with a request to modify the Durham CTP with an alternate alignment for Massey Chapel Road Realignment.

Background

The Durham - Chapel Hill - Carrboro Comprehensive Transportation Plan (DCHC CTP) proposes to realign the eastern leg of Massey Chapel Road southward, creating a four-leg intersection with Fayetteville Road and the existing western leg of Massey Chapel Road. Recognizing that this CTP alignment results in impacts to: environmental features, the existing Children's Campus preschool, and multiple existing single-family residents, this study considers an alternate alignment for relocating the eastern leg of Massey Chapel, generally using the existing James Ross Drive alignment.

Study Area

Per discussion with City and NCDOT staff, the following intersections were included in this study:

- Fayetteville Road Kentington Drive
- Fayetteville Road Massey Chapel Road *realigned* (existing James Ross Drive)
- Fayetteville Road Massey Chapel Road/Children's Campus Driveway
- Massey Chapel Road Massey Chapel Road *realigned* (existing James Ross Drive)/East Site Driveway
- Massey Chapel Road West Site Driveway

Future Year Volumes

The Triangle Regional Model (TRM) was used to project future year (2050) volumes at both Fayetteville Road – Massey Chapel Road intersections. The TRM was modified to agree with the adopted CTP alignment as a means of accurately determining east-west through traffic demands on Massey Chapel Road. Resulting turning movement counts at this intersection were then reassigned to the study scenario with the two legs of Massey Chapel Road offset as shown in **Figure 1 and 2**. Additionally, peak hour turning movement counts were collected at the Fayetteville Road – Kentington Drive intersection. Turning movements to and from Kentington Drive were not grown to the 2050 study year, as that area is fully built out. Through volumes along Fayetteville Road at this intersection were balanced with TRM volumes at Fayetteville Road – Massey Chapel Road. Where projected volumes were less than 4 vehicles, a minimum volume of 4 was used to be conservative.

Exhibit A indicates properties that have been assembled to accommodate a proposed residential development. As part of this study, approximately 110 single-family units and 320 low-rise multifamily

Kimley **»Horn**

units are assumed within this assemblage. This site is assumed to be accessed via one full-movement, western driveway along existing Massey Chapel Road and one full-movement, eastern driveway as the south leg of a roundabout at the Massey Chapel Road/James Ross Drive intersection. A future year of 2050 was studied.

Trip Generation

The trip generation potential of the assumed development was calculated based on data included in *Trip Generation* (Institute of Transportation Engineers, 11th Edition, 2021).

	Table 1 ITE Traffic Generation (Vehicles)													
		Intensity	Daily	AM Pea	ak Hour	PM Peak Hour								
		intensity	Dally	In	Out	In	Out							
215	Single Family Attached	110 d.u.	788	13	39	37	25							
220	Multifamily Housing (Low-Rise)	320 d.u.	2,128	29	93	100	58							
	Total Net New External Trips	2,916	42	132	137	83								

<u>Table 1</u> below shows the trip generation potential of the land uses in this analysis.

Trip Distribution and Assignment

The above trip generation was assigned to the site driveways based on the following distribution:

East Site Driveway

- 75% to/from Fayetteville Road via Massey Chapel Road realigned (existing James Ross Drive)
- 5% to/from the east via Massey Chapel Road

West Site Driveway

- 15% to/from Fayetteville Road via Massey Chapel Road *realigned* (existing James Ross Drive)
- 5% to/from the east via Massey Chapel Road

The TRM model already assumes significant trips from the traffic analysis zone (TAZ) where the proposed development is located; therefore, generated trips were not assigned further than the site driveways. Additionally, in order to not double-count trips from the TAZ and the assumed site, volumes were removed from movements between Massey Chapel Road *realigned* (James Ross Drive) and Massey Chapel Road.

Figures 3 and 4 show the assumed site traffic assignment and the future year (2050) traffic volumes, respectively.

Capacity Analysis

Capacity analyses were performed using Synchro Version 11 and SIDRA Intersection 9.1 software. Synchro and SIDRA intersection level-of-service (LOS) reports for the 2050 Future Year Scenario are attached. <u>Table 2</u> summarizes the levels-of-service at the study intersections.

Kimley »Horn

Table 2 Level-of-Service Summary												
Condition	AM Peak Hour LOS (Delay)	PM Peak Hour LOS (Delay)										
Fayetteville Road – Kentington Drive (Unsignalized)												
Future Year (2050) Traffic	EB – A (9.4) NBL – A (8.4)	EB – B (11.4) NBL – A (8.9)										
Fayetteville Road – Massey Chapel Road <i>realigned</i> (Signalized)												
Future Year (2050) Traffic	A (8.6)	B (12.5)										
Fayetteville Road – Massey Chapel Road/C	hildren's Campus Drive	eway (Signalized)										
Future Year (2050) Traffic	B (10.7)	B (15.3)										
Massey Chapel Road – Massey Chapel Road <i>r</i> e	ealigned/East Site Drive	way (Roundabout)^										
Future Year (2050) Traffic	A (3.7) Max v/c = 0.11	A (4.3) Max v/c = 0.24										
Massey Chapel Road – West S	ite Driveway (Unsignali	zed)										
Future Year (2050) Traffic	NB – A (8.4) WBL – A (7.2)	NB – A (8.4) WBL – A (7.3)										

[^]Overall intersection LOS, delay, and maximum v/c ratio reported from SIDRA

With the east leg of Massey Chapel Road realigned to the existing James Ross Drive, all study intersections are expected to operate with acceptable LOS and queues in both peak hours in the 2050 study year. **Figure 5** shows the assumed future laneage at the study area intersections.

Summary

Based on the analyses, future total east-west traffic demands on Massey Chapel Road are relatively low (85 in the AM peak hour and 141 in the PM peak hour) thereby not necessitating alignment at Fayetteville Road to maintain acceptable operations. Additionally, delays and queues are acceptable at all study area intersections in the 2050 study year. Therefore, and in light of the conflicts and number of properties adversely impacted by the current CTP alignment, we recommend modifying the CTP to realign the eastern leg of Massey Chapel Road to use the current alignment of James Ross Road.

Kimley **»Horn**

Should you have any questions or comments, please do not hesitate to contact me at (919) 653-5874 or <u>earl.lewellyn@kimley-horn.com</u>.

Sincerely,

Kimley-Horn and Associates, Inc. NC License # F-0102

En Jeanth

Earl Lewellyn, P.E. Vice President

Attachments: Exhibit A, Figures 1-4, CTP Realignment, Triangle Regional Model Forecasts, Trip Generation Calculations, Volume Development Spreadsheets, Synchro/SIDRA Output, Signal Plans

Recommended CTP Modification for Massey Chapel Road Realignment

Exhibit A - Massey Chapel Assemblage

MASSEY CHAPEL BASE MAP EXHIBIT DATE: 9/10/2024

GRAPHIC SCALE IN FEET D 75 150 30

BENEFIT OF A

NOTE: THIS PLAN IS CONCEPTUAL IN NATURE AND SURVEY, TOPOGRAPHY, UTILITIES, CONTACT WIT

THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND IMPROPER RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ADAPTATION BY KIMLEY-HORN AND ASSOCIATES, INC. SHALL BE WITHOUT LIABILITY TO KIMLEY-HORN AND ASSOCIATES, INC.

MASSEY CHAPEL ROAD
REALIGNMENT
FIGURE
DESIGN SPEED
40 MPH
DURHAM NORTH CAROLINA APRIL II,2022
$W \xrightarrow{N} E$
GRAPHIC SCALE
(IN FEET)

57 ↑ 39 → 42 ↓	39 251 27 ← ↓ → Final FYBLD Turns (AM) ← ↑ → 57 504 55	† ← ↓	48 46 48
64 † 81 → 43 ↓	61 484 107 ← ↓ → Final FYBLD Turns (PM) ← ↑ → 33 386 78	† ← ↓	83 60 75

Massey Chapel Assemblage Table 1 - Trip Generation (11th Edition)														
l and lise		Intensity		Daily		A	/I Peak Ho	our	PM Peak Hour					
	inte	iisity	Total	In	Out	Total	In	Out	Total	In	Out			
215 Single Family Attached Housing	110	d.u.	788	394	394	52	13	39	62	37	25			
220 Multifamily Housing (Low-Rise)	320	d.u.	2,128	1,064	1,064	122	29	93	158	100	58			
221 Multifamily Housing (Mid-Rise)		d.u.	0	0	0	0	0	0	0	0	0			
Total Net New External Trips			2,916	1,458	1,458	174	42	132	220	137	83			

K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\[Massey Chapel Assemblage - TIA Data Sheet.xlsx]Trip Gen

10/11/24

Project:	Massey Chapel Assemblage	
Location:	Durham, NC	
Scenario:	TRM 2050	
Ct. Date	9/26/2024	
Ct. Peaks	8:00 - 9:00 AM;	5:00 - 6:00 PM
E/W Street:	Kentington Drive	
N/S Street:	Fayetteville Road	

AM In AM Out PM In PM Out Residential New Trips: 42 132 137 83 Non-Residential New Trips: 0 0 0 0 Pass-By Trips: 0 0 0 0

Annual Growth Rate: 0.0% Growth Factor: 0.000

Existing Year: 2024 **Buildout Year:** 2050

AM PEAK HOUR PHF = 0.87

	Kentington Drive									Fayetter	ille Road		Fayetteville Road			
		East	bound			West	tbound			North	nbound			South	abound	
Description	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right
2024 Traffic Count	0	0	0	52	0	0	0	0	0	73	0	0	0	0	0	117
Count Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2024 Existing Traffic	0	0	0	52	0	0	0	0	0	73	0	0	0	0	0	117
2050 Bashannad Tastia	0	0	0	50	0	0	0	0	0	72	526	0	0	0	265	117
2030 Background Hame	0	0	0	52	0	0	0	0	0	15	550	0	0	0	205	11/
Project Traffic																
Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non-Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Non-Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T . I F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total External Site Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Capture Reduction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Capture Assignment	Ő	ō	õ	ō	ō	õ	ō	Ő	ō	Ő	õ	õ	ō	õ	õ	Ő
Total Pass-By Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-																
Total Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement % Impact (vs Existing) HIDE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2050 Buildout Tatal	0	0	0	52	0	0	0	0	0	72	526	0	0	0	265	117
2050 Buildout Iotal	0	0	0	52	0	0	0	0	0	/5	330	U	U	0	200	11/
Approach Percent Impact (vs. Existing		0.0	10%				-			0.0	JU%			0.0	JU%	

Overall Percent Impact (vs. Buildout) 0.0%

PM PEAK HOUR PHF = 0.96 Fayetteville Road Fayetteville Road Kentington Drive Eastbound Westbound Northbound Southbound Description U-Tu U-Tu Right U-Tur Right Righ J-Tu 2024 Traffic Count 0 0 0 134 0 0 0 0 0 34 0 0 0 0 0 42 Count Balancing 2024 Existing Traffic 134 42 34 0 0 0 0 0 0 0 0 0 0 0 0 0 2050 Background Traffic 0 0 0 134 0 0 0 34 499 0 0 518 42 0 0 0 Project Traffic Residential Percent Assignment Inbound 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% (0%) Percent Assignment Outbound Residential Project Traffic (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) 0 0 0 Non-Residential Percent Assignment Inbound 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Percent Assignment Outbound Non-Residential Project Traffic (0%) (0%)(0%) (0%) (0%)(0%) (0%)(0%)(0%)(0%) (0%)(0%) (0%) (0%) (0%)(0%) 0 0 0 0 0 Total External Site Traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pass-By Capture Reduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pass-By Capture Assignment Total Pass-By Traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total Project Traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Movement % Impact (vs Existing) HIDE 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2050 Buildout Total 134 499 518 42 0 0 0 0 0 0 0 0 34 0 0 0 Approach Percent Impact (vs. Existing Overall Percent Impact (vs. Buildout) 0.00% 0.00 0.09

Project:	Massey Chapel Assemblage
Location:	Durham, NC
Scenario:	TRM 2050
Ct. Date	From Trianals Basian Madal
Ct. Peaks	From Triangle Region Model
E/W Street:	Massey Chapel Road (realigned)
N/S Street:	Fayetteville Road

AM In AM Out PM In PM Out Residential New Trips: 42 132 137 83 Non-Residential New Trips: 0 0 0 0 Pass-By Trips: 0 0 0 0

Annual Growth Rate: 0.0% Growth Factor: 0.000

Existing Year: 2024 **Buildout Year:** 2050

AM PEAK HOUR PHF =

		Massey Chapel Road (realigned)								Fayette	ville Road		Fayetteville Road					
		East	bound			Wes	tbound			Nort	hbound			South	abound			
Description	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right		
2050 Background Traffic	0	0	0	0	0	94	0	48	0	0	561	94	0	27	290	0		
Project Traffic Residential																		
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)		
Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Non-Residential																		
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)		
Non-Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Total External Site Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Pass-By Capture Reduction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Pass-By Capture Assignment	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Total Pass-By Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Total Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Movement % Impact (vs Existing) HIDE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
2050 Buildout Total	0	0	0	0	0	94	0	48	0	0	561	94	0	27	290	0		
Approach Percent Impact (vs. Existing			-				-				-				-			

Overall Percent Impact (vs. Buildout) 0.0%

PM PEAK HOUR PHF = Chapel Road (realigned) Westbound Fayetteville Road Northbound Fayetteville Road Southbound Massey Eastbound Description U-Turi U-Tun Right U-Turr Right Thre Righ Throug Righ U-Turi Through [eff Through 2050 Background Traffic 0 0 0 0 0 135 0 83 0 0 450 159 0 107 545 0 **Project Traffic Residential** Percent Assignment Inbound 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Percent Assignment Outbound Residential Project Traffic (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) Non-Residential Percent Assignment Inbound Percent Assignment Outbound Non-Residential Project Traffic 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% (0%) (0%) (0%) (0%) (0%) (0%) (0%)(0%)(0%)(0%) (0%) (0% (0%) (0%) (0%) (0%)0 0 0 0 0 0 0 0 Total External Site Traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pass-By Capture Reduction Pass-By Capture Assignment Total Pass-By Traffic 0 Total Project Traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Movement % Impact (vs Existing) HIDE 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2050 Buildout Total 450 0 0 0 Approach Percent Impact (vs. Existing Overall Percent Impact (vs. Buildout) 0.09

k:\dur_ldev\massey chapel - patel\t4 - analysis\[massey chapel assemblage - tia data sheet.xlsx]int 2

10/11/24

Project:	Massey Chapel Assemblage
Location:	Durham, NC
Scenario:	TRM 2050
Ct. Date	F T. I. B. Y. M. I.
Ct. Peaks	From Triangle Region Model
E/W Street:	Massey Chapel Road/Children's Campus Drive
N/S Street:	Fayetteville Road

AM In AM Out PM In PM Out Residential New Trips: 42 132 137 83 Non-Residential New Trips: 0 0 0 0 Pass-By Trips: 0 0 0 0

Annual Growth Rate: 0.0% Ex Growth Factor: 0.000 Bu

Existing Year: 2024 **Buildout Year:** 2050

AM PEAK HOUR PHF =

		Massey Chapel Road Children's Campus Driveway									ville Road			Fayette	ville Road	
		East	bound			Wes	tbound			Nort	hbound			Sout	hbound	
Description	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right
2050 Background Traffic	0	96	4	42	0	4	4	4	0	57	559	4	0	4	299	85
Project Traffic Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non-Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Non-Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total External Site Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Capture Reduction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Capture Assignment	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Pass-By Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement % Impact (vs Existing) HIDE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2050 Buildout Total	0	96	4	42	0	4	4	4	0	57	559	4	0	4	299	85
Approach Percent Impact (vs. Existing			-				-				-				-	

Overall Percent Impact (vs. Buildout) 0.0%

PHF = Massey Chapel Road Eastbound Fayetteville Road Northbound Fayetteville Road Southbound Children's Campus Drivewa Westbound Description U-Tur U-Tun Right U-Turr Right Left Throug Right Through Right U-Turi Through Left Through 2050 Background Traffic 0 145 4 43 0 4 4 4 0 33 464 4 0 4 559 121 **Project Traffic Residential** Percent Assignment Inbound 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Percent Assignment Outbound Residential Project Traffic (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) Non-Residential Percent Assignment Inbound Percent Assignment Outbound Non-Residential Project Traffic 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)(0%) (0%) (0% (0%) (0%) (0%) (0%)0 0 0 0 0 0 0 0 0 Total External Site Traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pass-By Capture Reduction Pass-By Capture Assignment Total Pass-By Traffic 0 Total Project Traffic 0 Movement % Impact (vs Existing) HIDE 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2050 Buildout Total 145 464 121 Approach Percent Impact (vs. Existing Overall Percent Impact (vs. Buildout) 0.09

 $\label{eq:linear} k:\dur_ldev\massey\ chapel\ -\ patel\t4\ -\ analysis\[massey\ chapel\ assemblage\ -\ tia\ data\ sheet.xlsx]int\ 3$

10/11/24

PM PEAK HOUR

Project:	Massey Chapel Assemblage
Location:	Durham, NC
Scenario:	TRM 2050
Ct. Date	From Triangle Bagian Model
Ct. Peaks	From Triangle Region Woder
E/W Street:	Massey Chapel Road
N/S Street:	Site Driveway/Massey Chapel Road (realigned)

AM In AM Out PM In PM Out Residential New Trips: 42 132 137 83 Non-Residential New Trips: 0 0 0 0 Pass-By Trips: 0 0 0 0

Annual Growth Rate: 0.0% Growth Factor: 0.000

Existing Year: 2024 **Buildout Year:** 2050

AM PEAK HOUR	
PHF =	

		Massey C	hapel Road			Massey C	Chapel Road			Site D	riveway		Mas	ssey Chapel	Road (realign	ied)
		East	bound			West	tbound			Nort	hbound			Sout	hbound	
Description	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right
2050 Background Traffic	0	4	4	0	0	0	4	142	0	0	0	0	0	121	0	4
Project Traffic Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	5%	5%	0%	0%	0%	0%	0%	0%	-90%	75%	15%
Percent Assignment Outbound	(0%)	(15%)	(5%)	(0%)	(0%)	(0%)	(0%)	-(90%)	(0%)	(0%)	(75%)	(5%)	(0%)	(0%)	(0%)	(0%)
Residential Project Traffic	0	20	7	0	0	2	2	-119	0	0	99	7	0	-38	32	6
Non-Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Non-Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total External Site Traffic	0	20	7	0	0	2	2	-119	0	0	99	7	0	-38	32	6
Pass-By Capture Reduction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Capture Assignment	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Pass-By Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Traffic	0	20	7	0	0	2	2	-119	0	0	99	7	0	-38	32	6
Movement % Impact (vs Existing) HIDE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2050 Buildout Total	0	24	11	0	0	2	6	23	0	0	99	7	0	83	32	10
Approach Percent Impact (vs. Existing			-				-				-				-	

Overall Percent Impact (vs. Buildout) 6.1%

PHF = Massey Chapel Road Eastbound Massey Chapel Road Westbound Site Driveway Northbound Massey Chapel Road (realigned) Southbound Description U-Tur U-Tun U-Turr Right Left Throug Right Through Right U-Turi Through Right Through 2050 Background Traffic 0 4 4 0 0 0 4 218 0 0 0 0 0 266 0 4 **Project Traffic Residential** Percent Assignment Inbound 0% 0% 0% 0% 0% 5% 5% 0% 0% 0% 0% 0% 0% -90% 75% 15% Percent Assignment Outbound Residential Project Traffic (0%) (15%) (5%) (0%) (0%) (0%) (0%) -(90%) (0%) (0%) (75%) (5%) (0%) (0%) (0%) (0%) Non-Residential Percent Assignment Inbound Percent Assignment Outbound Non-Residential Project Traffic 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)(0%) (0%) (0% (0%) (0%) (0%) (0%)0 0 0 0 0 0 0 0 0 Total External Site Traffic 0 12 4 0 0 7 7 -75 0 0 62 4 0 -123 103 21 Pass-By Capture Reduction Pass-By Capture Assignment Total Pass-By Traffic 0 12 4 0 7 7 0 0 62 4 0 -123 103 21 Total Project Traffic 0 -75 Movement % Impact (vs Existing) HIDE 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2050 Buildout Total 16 143 143 103 25 Approach Percent Impact (vs. Existing Overall Percent Impact (vs. Buildout) 4.2%

k:\dur_ldev\massey chapel - patel\t4 - analysis\[massey chapel assemblage - tia data sheet.xlsx]int 4

10/11/24

PM PEAK HOUR

Project:	Massey Chapel Assemblage
Location:	Durham, NC
Scenario:	TRM 2050
Ct. Date	Farm Tainada Danian Madal
Ct. Peaks	From Triangle Region Model
E/W Street:	Massey Chapel Road
N/S Street:	Site Driveway

AM In AM Out PM In PM Out Residential New Trips: 42 132 137 83 Non-Residential New Trips: 0 0 0 0 Pass-By Trips: 0 0 0 0

Annual Growth Rate: 0.0% Growth Factor: 0.000

Existing Year: 2024 **Buildout Year:** 2050

AM PEAK HOUR PHF =

		Massey C	Chapel Road			Massey C	Chapel Road			Site D	Driveway					
		East	bound			West	tbound			Nort	hbound			Sout	hbound	
Description	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right	U-Turn	Left	Through	Right
2050 Background Traffic	0	0	8	0	0	0	8	0	0	0	0	0	0	0	0	0
Project Traffic Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(20%)	(0%)	(0%)	(0%)	(0%)
Residential Project Traffic	0	0	0	0	0	8	0	0	0	0	0	26	0	0	0	0
Non-Residential																
Percent Assignment Inbound	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percent Assignment Outbound	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Non-Residential Project Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total External Site Traffic	0	0	0	0	0	8	0	0	0	0	0	26	0	0	0	0
Pass-By Capture Reduction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Capture Assignment	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Pass-By Traffic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Traffic	0	0	0	0	0	8	0	0	0	0	0	26	0	0	0	0
Movement % Impact (vs Existing) HIDE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2050 Buildout Total	0	0	8	0	0	8	8	0	0	0	0	26	0	0	0	0
Approach Percent Impact (vs. Existing			-				-				-				-	

Overall Percent Impact (vs. Buildout) 68.0%

PHF = Massey Chapel Road Eastbound Massey Chapel Road Westbound Site Driveway Northbound Southbound Description U-Tur U-Tun Right U-Turr Right Left Throug Right Through Righ U-Turi Through Through 2050 Background Traffic 0 0 8 0 0 0 8 0 0 0 0 0 0 0 0 0 **Project Traffic Residential** Percent Assignment Inbound 0% 0% 0% 0% 0% 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Percent Assignment Outbound Residential Project Traffic (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (20%) (0%) (0%) (0%) (0%) Non-Residential Percent Assignment Inbound Percent Assignment Outbound Non-Residential Project Traffic 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% (0%) (0%) (0%) (0%) (0%) (0%) (0%)(0%) (0%) (0% (0%) (0%) (0%) (0%) (0%) (0%) 0 0 0 0 0 0 0 0 Total External Site Traffic 0 0 0 0 0 27 0 0 0 0 0 17 0 0 0 0 Pass-By Capture Reduction Pass-By Capture Assignment Total Pass-By Traffic 0 Total Project Traffic 0 0 0 0 27 0 0 0 0 0 17 0 0 0 0 0 Movement % Impact (vs Existing) HIDE 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2050 Buildout Total Approach Percent Impact (vs. Existing Overall Percent Impact (vs. Buildout) 73 39

k:\dur_ldev\massey chapel - patel\t4 - analysis\[massey chapel assemblage - tia data sheet.xlsx]int 5

10/11/24

PM PEAK HOUR

	٠	7	1	1	ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	7	†	† †	1
Traffic Volume (vph)	0	52	73	536	265	117
Future Volume (vph)	0	52	73	536	265	117
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	150			125
Storage Lanes	0	1	1			1
Taper Length (ft)	25		125			
Satd. Flow (prot)	0	1611	1770	1863	3539	1583
Flt Permitted			0.950			
Satd. Flow (perm)	0	1611	1770	1863	3539	1583
Link Speed (mph)	25			45	45	
Link Distance (ft)	1581			274	552	
Travel Time (s)	43.1			4.2	8.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	58	81	596	294	130
Enter Blocked Intersection	No	No	No	Yes	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			24	18	
Link Offset(ft)	0			4	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	ation 31.5%			IC	U Level	of Service A
Analysis Period (min) 15						

Intersection

Int Delay, s/veh

Int Delay, s/veh	1.1							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		1	5	1	^	1		
Traffic Vol, veh/h	0	52	73	536	265	117		
Future Vol, veh/h	0	52	73	536	265	117		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	0	150	-	-	125		
Veh in Median Storage	e, # 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	90	90	90	90	90	90		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	0	58	81	596	294	130		

Major/Minor	Minor2		Major1	Ma	ijor2		
Conflicting Flow All	-	147	424	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.93	4.13	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.319	2.219	-	-	-	
Pot Cap-1 Maneuver	0	874	1133	-	-	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	-	874	1133	-	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Approach	EB		NB		SB		

Approach	EB	NB	১০	
HCM Control Delay, s/v	9.4	1	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1133	- 874	-	-	
HCM Lane V/C Ratio	0.072	- 0.066	-	-	
HCM Control Delay (s/veh)	8.4	- 9.4	-	-	
HCM Lane LOS	А	- A	-	-	
HCM 95th %tile Q (veh)	0.2	- 0.2	-	-	

	4	*	Ť	1	4	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W.		t.		5	٠
Traffic Volume (vph)	94	48	561	94	27	290
Future Volume (vph)	94	48	561	94	27	290
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	1000	0	100	1000
Storage Lanes	1	0		0	100	
Tapor Longth (ft)	25	0		U	25	
Sate Flow (prot)	1720	0	1907	٥	1770	1963
Elt Dermitted	0.069	0	1027	U	0.220	1005
Fit Ferminited	1700	٥	1007	٥	0.529	1062
Salu. Flow (perili)	1720	Vaa	1027	Vaa	015	1005
Right Turn on Red	00	res	04	Yes		
Sato. Flow (RTOR)	20		21			45
Link Speed (mph)	35		45			45
LINK Distance (ft)	892		953			194
Iravel Time (s)	17.4		14.4			2.9
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	157	0	727	0	30	322
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	•	18	•		18
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane			Yes			
Headway Eactor	1 00	1 00	1 00	1 00	1 00	1 00
Turning Speed (mph)	1.00	1.00 Q	1.00	1.00 Q	1.00	1.00
Number of Detectors	1	9	1	9	1	1
Number of Detectors	I		1		1	1
Leading Detector (ft)	25		200		40	200
Leading Detector (ft)	35		300		40	300
Trailing Detector (ft)	-5		300		0	300
Detector 1 Position(ft)	-5		300		0	300
Detector 1 Size(ft)	40		6		40	6
Detector 1 Type	CI+Ex		CI+Ex		Cl+Ex	Cl+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0		0.0	0.0
Detector 1 Queue (s)	0.0		0.0		0.0	0.0
Detector 1 Delay (s)	5.0		0.0		3.0	0.0
Turn Type	Prot		NA		D.Pm	NA
Protected Phases	8		2			6
Permitted Phases	-				2	
Detector Phase	8		2		2	6
Switch Phase	U		<u> </u>		£	J
Minimum Initial (s)	70		12.0		12.0	12.0
Minimum Split (s)	14.0		12.0		12.0	12.0
Total Split (s)	14.0		19.0		19.0	19.0
Total Split (S)	24.0		00.0		00.0	0.00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	20.7%		13.3%		13.3%	13.3%
Yellow Time (s)	4.1		4.6		4.6	4.6
All-Red Time (s)	2.0		1.5		1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1		-1.1	-1.1

K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Synchro\Massey Chapel Realigned.syn Kimley-Horn

Synchro 12 Report

	1	*	1	1	1	ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Total Lost Time (s)	5.0		5.0		5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None		C-Max		C-Max	C-Max
Act Effct Green (s)	12.7		67.3		67.3	67.3
Actuated g/C Ratio	0.14		0.75		0.75	0.75
v/c Ratio	0.59		0.53		0.07	0.23
Control Delay (s/veh)	38.8		4.2		4.3	4.4
Queue Delay	0.0		0.0		0.0	0.0
Total Delay (s/veh)	38.8		4.2		4.3	4.4
LOS	D		А		А	А
Approach Delay (s/veh)	38.8		4.2			4.4
Approach LOS	D		А			А
Queue Length 50th (ft)	70		99		4	45
Queue Length 95th (ft)	124		81		14	92
Internal Link Dist (ft)	812		873			114
Turn Bay Length (ft)					100	
Base Capacity (vph)	383		1371		458	1393
Starvation Cap Reductn	0		0		0	0
Spillback Cap Reductn	0		0		0	0
Storage Cap Reductn	0		0		0	0
Reduced v/c Ratio	0.41		0.53		0.07	0.23
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 88 (98%), Reference	ced to phase	2:NBSB	and 6:SB	T, Start o	of Green	
Natural Cycle: 45						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay (s/veh): 8.6			l	ntersectio	n LOS: A
Intersection Capacity Utiliz	ation 51.7%](CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 2: Fayetteville Road & Massey Chapel Road (Realigned)

Massey Chapel Assemblage

3: Fayetteville Road & Massey Chapel Road/Children's Campus Driveway

Future Year (2050) AM av 10/02/2024

	٠	-	7	1	+	*	1	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ŧ	1		ŧ	1	2	ţ,		2	ţ,	
Traffic Volume (vph)	96	4	42	4	4	4	57	559	4	4	299	85
Future Volume (vph)	96	4	42	4	4	4	57	559	4	4	299	85
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		150	30		0	50		0	100		0
Storage Lanes	0		1	1		1	1		0	1		0
Taper Length (ft)	25			70			150			100		
Satd. Flow (prot)	0	1777	1583	0	1818	1583	1770	1861	0	1770	1801	0
Flt Permitted		0.728			0.856		0.472			0.363		
Satd. Flow (perm)	0	1356	1583	0	1595	1583	879	1861	0	676	1801	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			102			95		1			26	
Link Speed (mph)		45			20			45			45	
Link Distance (ft)		1053			278			965			953	
Travel Time (s)		16.0			9.5			14.6			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	111	47	0	8	4	63	625	0	4	426	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0	•		0	Ū		12	Ū		12	
Link Offset(ft)		0			-20			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	1		1	1	
Detector Template	Left			Left								
Leading Detector (ft)	20	40	40	20	40	40	40	266		40	306	
Trailing Detector (ft)	0	0	0	0	0	0	0	260		0	300	
Detector 1 Position(ft)	0	0	0	0	0	0	0	260		0	300	
Detector 1 Size(ft)	20	40	40	20	40	40	40	6		40	6	
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex								
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	3.0	15.0	0.0	3.0	15.0	15.0	0.0		15.0	0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	D.P+P	NA		D.P+P	NA	
Protected Phases		4	5		8	1	5	2		1	6	
Permitted Phases	4		4	8		8	6			2		
Detector Phase	4	4	5	8	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0		7.0	12.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	12.0	13.0	18.0		12.0	18.0	
Total Split (s)	21.0	21.0	13.0	21.0	21.0	12.0	13.0	57.0		12.0	56.0	
Total Split (%)	23.3%	23.3%	14.4%	23.3%	23.3%	13.3%	14.4%	63.3%		13.3%	62.2%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	3.0	3.0	4.6		3.0	4.6	
All-Red Time (s)	2.4	2.4	2.1	2.3	2.3	1.9	2.1	1.1		1.9	1.1	
Lost Time Adjust (s)		-0.7	-0.1		-0.3	0.1	-0.1	-0.7		0.1	-0.7	

K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Synchro\Massey Chapel Realigned.syn Kimley-Horn

Synchro 12 Report

Massey Chapel Assemblage Future Year (2050) AM 3: Fayetteville Road & Massey Chapel Road/Children's Campus Driveway

10/02/2024

	٠	-	7	1	←	*	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Lost Time (s)		5.0	5.0		5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag			Lead			Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?			Yes			Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		12.2	21.7		12.1	18.5	66.4	69.0		70.4	61.7	
Actuated g/C Ratio		0.14	0.24		0.13	0.21	0.74	0.77		0.78	0.69	
v/c Ratio		0.61	0.10		0.04	0.01	0.09	0.44		0.01	0.34	
Control Delay (s/veh)		50.2	0.5		32.0	0.0	3.9	7.4		2.8	7.3	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay (s/veh)		50.2	0.5		32.0	0.0	3.9	7.4		2.8	7.3	
LOS		D	А		С	А	А	А		А	А	
Approach Delay (s/veh)		35.4			21.3			7.1			7.2	
Approach LOS		D			С			А			А	
Queue Length 50th (ft)		60	0		4	0	8	107		0	97	
Queue Length 95th (ft)		110	2		16	0	20	310		m2	139	
Internal Link Dist (ft)		973			198			885			873	
Turn Bay Length (ft)			150				50			100		
Base Capacity (vph)		241	474		283	452	734	1426		606	1242	
Starvation Cap Reductn		0	0		0	0	0	0		0	0	
Spillback Cap Reductn		0	0		0	0	0	0		0	0	
Storage Cap Reductn		0	0		0	0	0	0		0	0	
Reduced v/c Ratio		0.46	0.10		0.03	0.01	0.09	0.44		0.01	0.34	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 2 (2%), Referenced	to phase 2:	NBSB an	d 6:NBSE	Start of	f Green							
Natural Cycle: 60												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 0.61												
Intersection Signal Delay (s	/veh): 10.7			Ir	ntersectior	n LOS: B						
Intersection Capacity Utiliza	ation 60.2%			IC	CU Level o	of Service	B					
Analysis Period (min) 15												
m Volume for 95th percer	ntile queue i	is metere	d by upst	ream sigr	nal.							
Splits and Phases: 3: Fay	yetteville Ro	oad & Ma	ssey Cha	pel Road	/Children'	s Campus	s Drivewa	ау				

4	Ø2 (R)		G Ø1	↓ _{Ø4}
57 s			12 s	21 s
5	Ø5	Ø6 (R)		† ø8
13 s		56 s		21 s

K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Synchro\Massey Chapel Realigned.syn Kimley-Horn

MOVEMENT SUMMARY

∛ Site: 4 [AM Peak Hour (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Massey Chapel Road at East Site Driveway Site Category: -Roundabout

Vehicle	Moven	nent Perfo	rmance												
Mov	Turn	Mov	Demand I	Flows	Arrival	Flows	Deg.	Aver.	Level of	95% Ba	ick Of Queue	Prop.	Eff.	Aver.	Aver.
U		Class	Γιοται	ΗVΙ	[Ισται	ΗVΙ	Sath	Delay	Service	[ven.	Dist J	Que	Stop Rate	NO. OF Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	ft				mph
South: Ea	ist Site	Driveway													
3	L2	All MCs	4	2.0	4	2.0	0.107	4.0	LOS A	0.6	15.2	0.34	0.17	0.34	23.4
		LV	4		4		0.107	4.0	LOS A	0.6	15.2	NA	NA	NA	23.4
		HV	0		0		0.107	7.5	LOS A	0.6	15.2	NA	NA	NA	22.6
8	T1	All MCs	110	2.0	110	2.0	0.107	4.0	LOS A	0.6	15.2	0.34	0.17	0.34	23.2
		LV	108		108		0.107	4.0	LOS A	0.6	15.2	NA	NA	NA	23.3
		HV	2		2		0.107	7.5	LOS A	0.6	15.2	NA	NA	NA	22.2
18	R2	All MCs	8	2.0	8	2.0	0.107	4.0	LOS A	0.6	15.2	0.34	0.17	0.34	23.5
		LV	8		8		0.107	4.0	LOS A	0.6	15.2	NA	NA	NA	23.5
		HV	0		0		0.107	7.5	LOS A	0.6	15.2	NA	NA	NA	22.7
Approach			122	2.0	122	2.0	0.107	4.0	LOS A	0.6	15.2	0.34	0.17	0.34	23.3
East: Mas	ssey Ch	apel Road													
1	L2	All MCs	4	2.0	4	2.0	0.033	3.4	LOS A	0.2	4.5	0.34	0.16	0.34	30.4
		LV	4		4		0.033	3.4	LOS A	0.2	4.5	NA	NA	NA	30.5
		HV	0		0		0.033	6.6	LOS A	0.2	4.5	NA	NA	NA	29.2
6	T1	All MCs	7	2.0	7	2.0	0.033	3.4	LOS A	0.2	4.5	0.34	0.16	0.34	30.9
		LV	7		7		0.033	3.4	LOS A	0.2	4.5	NA	NA	NA	30.9
		HV	0		0		0.033	6.6	LOS A	0.2	4.5	NA	NA	NA	29.6
16	R2	All MCs	26	2.0	26	2.0	0.033	3.4	LOS A	0.2	4.5	0.34	0.16	0.34	29.7
		LV	25		25		0.033	3.4	LOS A	0.2	4.5	NA	NA	NA	29.8
		HV	1		1		0.033	6.6	LOS A	0.2	4.5	NA	NA	NA	28.2
Approach			37	2.0	37	2.0	0.033	3.4	LOS A	0.2	4.5	0.34	0.16	0.34	30.1
North: Ma	issey C	hapel Road	(Realigned)												
7	L2	All MCs	92	2.0	92	2.0	0.108	3.5	LOS A	0.6	16.2	0.11	0.02	0.11	28.3
		LV	90		90		0.108	3.4	LOS A	0.6	16.2	NA	NA	NA	28.3

		HV	2		2		0.108	6.3	LOS A	0.6	16.2	NA	NA	NA	27.1
4	T1	All MCs	36	2.0	36	2.0	0.108	3.5	LOS A	0.6	16.2	0.11	0.02	0.11	28.8
		LV	35		35		0.108	3.4	LOS A	0.6	16.2	NA	NA	NA	28.8
		HV	1		1		0.108	6.3	LOS A	0.6	16.2	NA	NA	NA	27.6
14	R2	All MCs	11	2.0	11	2.0	0.108	3.5	LOS A	0.6	16.2	0.11	0.02	0.11	28.6
		LV	11		11		0.108	3.4	LOS A	0.6	16.2	NA	NA	NA	28.6
		HV	0		0		0.108	6.3	LOS A	0.6	16.2	NA	NA	NA	27.4
Approach			139	2.0	139	2.0	0.108	3.5	LOS A	0.6	16.2	0.11	0.02	0.11	28.4
West: Mas	ssey C	hapel Road													
5	L2	All MCs	27	2.0	27	2.0	0.038	3.5	LOS A	0.2	5.1	0.32	0.15	0.32	28.4
		LV	26		26		0.038	3.4	LOS A	0.2	5.1	NA	NA	NA	28.4
		HV	1		1		0.038	6.6	LOS A	0.2	5.1	NA	NA	NA	27.0
2	T1	All MCs	12	2.0	12	2.0	0.038	3.5	LOS A	0.2	5.1	0.32	0.15	0.32	30.0
		LV	12		12		0.038	3.4	LOS A	0.2	5.1	NA	NA	NA	30.0
		HV	0		0		0.038	6.6	LOS A	0.2	5.1	NA	NA	NA	28.8
12	R2	All MCs	4	2.0	4	2.0	0.038	3.5	LOS A	0.2	5.1	0.32	0.15	0.32	29.8
		LV	4		4		0.038	3.4	LOS A	0.2	5.1	NA	NA	NA	29.9
		HV	0		0		0.038	6.6	LOS A	0.2	5.1	NA	NA	NA	28.7
Approach			43	2.0	43	2.0	0.038	3.5	LOS A	0.2	5.1	0.32	0.15	0.32	29.1
All Vehicle	es		341	2.0	341	2.0	0.108	3.7	LOS A	0.6	16.2	0.24	0.11	0.24	26.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA HCM.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Monday, October 7, 2024 11:26:54 AM Project: K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Sidra\Massey Chapel @ Site Driveway.sip9

	-	7	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ħ			ŧ	Y		
Traffic Volume (vph)	8	0	8	8	0	26	
Future Volume (vph)	8	0	8	8	0	26	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Satd. Flow (prot)	1863	0	0	1818	1611	0	
Flt Permitted				0.976			
Satd. Flow (perm)	1863	0	0	1818	1611	0	
Link Speed (mph)	35			35	25		
Link Distance (ft)	533			475	510		
Travel Time (s)	10.4			9.3	13.9		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	9	0	0	18	29	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	0			0	12		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized	1						
Intersection Capacity Utilization	ation 17.5%			IC	U Level	of Service	λ÷
Amelia Deviced (main) 45							

Analysis Period (min) 15

Intersection

Int Delay, s/veh

HCM 95th %tile Q (veh)

Int Delay, s/veh	5.5						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1.			4	Y		
Traffic Vol, veh/h	8	0	8	8	0	26	
Future Vol, veh/h	8	0	8	8	0	26	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	9	0	9	9	0	29	

Major/Minor I	Major1		Major2		Minor1	
Conflicting Flow All	C) 0	9	0	36	9
Stage 1	-		-	-	9	-
Stage 2	-		-	-	27	-
Critical Hdwy	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1	-		-	-	5.42	-
Critical Hdwy Stg 2	-		-	-	5.42	-
Follow-up Hdwy	-		2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-		1611	-	977	1073
Stage 1	-		-	-	1014	-
Stage 2	-		-	-	996	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-		1611	-	971	1073
Mov Cap-2 Maneuver	-		-	-	971	-
Stage 1	-		-	-	1014	-
Stage 2	-		-	-	990	-
Approach	ED)	\//D		ND	
)				
HCIVI Control Delay, s/	v i)	3.0		8.4	
HCM LOS					A	
Minor Lane/Major Mvm	nt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1073	-	-	1611	-
HCM Lane V/C Ratio		0.027	-	-	0.006	-
HCM Control Delay (s/	veh)	8.4	-	-	7.2	0
HCM Lane LOS		А	-	-	А	А

_

0

_

-

0.1

	٠	7	1	1	ŧ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	7	+	^	1
Traffic Volume (vph)	0	134	34	499	518	42
Future Volume (vph)	0	134	34	499	518	42
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	150			125
Storage Lanes	0	1	1			1
Taper Length (ft)	25		125			
Satd. Flow (prot)	0	1611	1770	1863	3539	1583
Flt Permitted			0.950			
Satd. Flow (perm)	0	1611	1770	1863	3539	1583
Link Speed (mph)	25			45	45	
Link Distance (ft)	1581			274	552	
Travel Time (s)	43.1			4.2	8.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	149	38	554	576	47
Enter Blocked Intersection	No	No	No	Yes	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			24	18	
Link Offset(ft)	0			4	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	ation 29.6%			IC	U Level	of Service A
Analysis Period (min) 15						

Intersection

Int Delay, s/veh	1.5						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1	5	1	**	1	
Traffic Vol, veh/h	0	134	34	499	518	42	
Future Vol, veh/h	0	134	34	499	518	42	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	150	-	-	125	
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	149	38	554	576	47	

Major/Minor	Minor2		Major1	Majo	or2		
Conflicting Flow All	-	288	623	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.93	4.13	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.319	2.219	-	-	-	
Pot Cap-1 Maneuver	0	709	956	-	-	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	-	709	956	-	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Approach	EB		NB	(SB		
HCM Control Delay, s/	′v 11.4		0.6		0		

HCM LOS В

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	956	- 709	-	-
HCM Lane V/C Ratio	0.04	- 0.21	-	-
HCM Control Delay (s/veh)	8.9	- 11.4	-	-
HCM Lane LOS	А	- B	-	-
HCM 95th %tile Q (veh)	0.1	- 0.8	-	-

	4	*	t	1	4	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		t.		3	٠
Traffic Volume (vph)	135	83	450	159	107	545
Future Volume (vph)	135	83	450	159	107	545
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		0	100	1000
Storage Lanes	1	0		0	100	
Taper Length (ft)	25	U		U	25	
Satd Flow (prot)	1715	0	1798	0	1770	1863
Elt Permitted	0 970	0	1750	0	0 341	1000
Satd Flow (perm)	1715	٥	1708	٥	635	1863
Pight Turn on Ped	1715	Vos	1130	Vos	000	1005
	21	165	11	165		
Jalu. Flow (RTOR)	25		44			45
Link Opeeu (Inph)	000		40			40
	09Z		900			194
Traver Time (S)	17.4	0.00	14.4	0.00	0.00	2.9
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.40	•	077	•	440	000
Lane Group Flow (vph)	242	0	6//	0	119	606
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Lett	Right	Left	Right	Left	Left
Median Width(ft)	12		18			18
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane			Yes			
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		1		1	1
Detector Template						
Leading Detector (ft)	35		306		40	306
Trailing Detector (ft)	-5		300		0	300
Detector 1 Position(ft)	-5		300		0	300
Detector 1 Size(ft)	40		6		40	6
Detector 1 Type	CI+Ex		CI+Ex		Cl+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0		0.0	0.0
Detector 1 Queue (s)	0.0		0.0		0.0	0.0
Detector 1 Delay (s)	5.0		0.0		3.0	0.0
Turn Type	Prot		NA		D Pm	NA
Protected Phases	8		2		0.1 11	6
Permitted Phases	U		2		2	U
Detector Phase	8		2		2	6
Switch Phase	0		2		2	0
Minimum Initial (a)	70		12.0		12.0	12.0
Minimum Calit (S)	110		12.0		12.0	12.0
Total Split (s)	14.0		19.0		19.0	19.0
Total Split (S)	24.0		00.00		00.0	00.0
	20.7%		13.3%		13.3%	13.3%
Yellow Time (s)	4.1		4.6		4.6	4.6
All-Red Time (s)	2.0		1.5		1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1		-1.1	-1.1

K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Synchro\Massey Chapel Realigned.syn Kimley-Horn

Synchro 12 Report

	1	*	t	1	1	Ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Total Lost Time (s)	5.0		5.0		5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None		C-Max		C-Max	C-Max
Act Effct Green (s)	15.8		64.2		64.2	64.2
Actuated g/C Ratio	0.18		0.71		0.71	0.71
v/c Ratio	0.74		0.52		0.26	0.46
Control Delay (s/veh)	44.5		6.7		7.0	7.3
Queue Delay	0.0		0.0		0.0	0.0
Total Delay (s/veh)	44.5		6.7		7.0	7.3
LOS	D		А		А	А
Approach Delay (s/veh)	44.5		6.7			7.3
Approach LOS	D		А			А
Queue Length 50th (ft)	113		123		21	129
Queue Length 95th (ft)	189		122		50	213
Internal Link Dist (ft)	812		873			114
Turn Bay Length (ft)					100	
Base Capacity (vph)	386		1295		453	1329
Starvation Cap Reductn	0		0		0	0
Spillback Cap Reductn	0		0		0	0
Storage Cap Reductn	0		0		0	0
Reduced v/c Ratio	0.63		0.52		0.26	0.46
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 90)					
Offset: 88 (98%), Reference	ced to phase	2:NBSB	and 6:SB	T, Start o	of Green	
Natural Cycle: 45						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.74						
Intersection Signal Delay (s/veh): 12.5			Ir	ntersectio	n LOS: B
Intersection Capacity Utiliz	zation 68.4%			10	CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 2: Fayetteville Road & Massey Chapel Road (Realigned)

Massey Chapel Assemblage

3: Fayetteville Road & Massey Chapel Road/Children's Campus Driveway

Future Year (2050) PM av 10/02/2024

	٦	-	7	1	+	*	1	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ŧ	1		ţ	1	2	ţ,		2	ţ,	
Traffic Volume (vph)	145	4	43	4	4	4	33	464	4	4	559	121
Future Volume (vph)	145	4	43	4	4	4	33	464	4	4	559	121
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		150	30		0	50		0	100		0
Storage Lanes	0		1	1		1	1		0	1		0
Taper Length (ft)	25			70			150			100		
Satd. Flow (prot)	0	1775	1583	0	1818	1583	1770	1861	0	1770	1812	0
Flt Permitted		0.726			0.866		0.238			0.412		
Satd. Flow (perm)	0	1352	1583	0	1613	1583	443	1861	0	767	1812	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			102			95		1			20	
Link Speed (mph)		45			20			45			45	
Link Distance (ft)		1053			278			965			953	
Travel Time (s)		16.0			9.5			14.6			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	165	48	0	8	4	37	520	0	4	755	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0	Ŭ		0	Ū		12	Ū		12	Ū
Link Offset(ft)		0			-20			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	1		1	1	
Detector Template	Left			Left								
Leading Detector (ft)	20	40	40	20	40	40	40	266		40	306	
Trailing Detector (ft)	0	0	0	0	0	0	0	260		0	300	
Detector 1 Position(ft)	0	0	0	0	0	0	0	260		0	300	
Detector 1 Size(ft)	20	40	40	20	40	40	40	6		40	6	
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	3.0	15.0	0.0	3.0	15.0	15.0	0.0		15.0	0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	D.P+P	NA		D.P+P	NA	
Protected Phases		4	5		8	1	5	2		1	6	
Permitted Phases	4		4	8		8	6			2		
Detector Phase	4	4	5	8	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0		7.0	12.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	12.0	13.0	18.0		12.0	18.0	
Total Split (s)	21.0	21.0	13.0	21.0	21.0	12.0	13.0	57.0		12.0	56.0	
Total Split (%)	23.3%	23.3%	14.4%	23.3%	23.3%	13.3%	14.4%	63.3%		13.3%	62.2%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	3.0	3.0	4.6		3.0	4.6	
All-Red Time (s)	2.4	2.4	2.1	2.3	2.3	1.9	2.1	1.1		1.9	1.1	
Lost Time Adjust (s)		-0.7	-0.1		-0.3	0.1	-0.1	-0.7		0.1	-0.7	

K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Synchro\Massey Chapel Realigned.syn Kimley-Horn

Synchro 12 Report

Massey Chapel Assemblage Future Yea 3: Fayetteville Road & Massey Chapel Road/Children's Campus Driveway

Future Year (2050) PM av 10/02/2024

	۶	+	1	1	ł	*	1	1	1	4	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Lost Time (s)		5.0	5.0		5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag			Lead			Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?			Yes			Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		14.2	26.3		14.2	22.2	61.8	63.4		64.8	56.1	
Actuated g/C Ratio		0.16	0.29		0.16	0.25	0.69	0.70		0.72	0.62	
v/c Ratio		0.77	0.09		0.03	0.01	0.09	0.40		0.01	0.66	
Control Delay (s/veh)		60.2	0.5		31.0	0.0	4.4	7.7		3.3	12.2	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay (s/veh)		60.2	0.5		31.0	0.0	4.4	7.7		3.3	12.2	
LOS		E	А		С	А	А	А		А	В	
Approach Delay (s/veh)		46.7			20.7			7.5			12.2	
Approach LOS		D			С			А			В	
Queue Length 50th (ft)		89	0		4	0	5	100		0	169	
Queue Length 95th (ft)		#178	2		16	0	13	238		m1	214	
Internal Link Dist (ft)		973			198			885			873	
Turn Bay Length (ft)			150				50			100		
Base Capacity (vph)		240	550		286	528	425	1310		629	1136	
Starvation Cap Reductn		0	0		0	0	0	0		0	0	
Spillback Cap Reductn		0	0		0	0	0	0		0	0	
Storage Cap Reductn		0	0		0	0	0	0		0	0	
Reduced v/c Ratio		0.69	0.09		0.03	0.01	0.09	0.40		0.01	0.66	
Intersection Summary	0.11											
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 90	O.			0	0							
Natural Cycle: 60	o phase 2:	NBSB an	a o:inbse	s, Start of	Green							
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.77	rainated											
Intersection Signal Delay (s/	(veh): 15.3			In	tersection	n LOS: B						
Intersection Capacity Utiliza	tion 60.9%			IC	CU Level	of Service	B					
Analysis Period (min) 15												
# 95th percentile volume e	exceeds ca	pacitv. qu	eue mav	be lonae	r.							
Queue shown is maximu	m after two	cvcles.	··· · ,	<u> </u>								
m Volume for 95th percen	tile queue i	s metere	d by upstr	eam sign	al.							
Splits and Phases: 3: Fay	etteville Ro	bad & Ma	ssey Cha	pel Road	/Children'	s Campus	s Drivewa	ау				

4	Ø2 (R)		\$ _{Ø1}	↓ _{Ø4}
57 s			12 s	21 s
5	Ø5	Ø6 (R)		† _{Ø8}
13 s		56 s		21 s

K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Synchro\Massey Chapel Realigned.syn Kimley-Horn

MOVEMENT SUMMARY

∛ Site: 4 [PM Peak Hour (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Massey Chapel Road at East Site Driveway Site Category: -Roundabout

Vehicle Movement Performance															
Mov	Turn	Mov	Demand I	Flows	Arrival	Flows	Deg.	Aver.	Level of	95% Ba	ick Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	[lotal	HVJ	[lotal	HVJ	Satn	Delay	Service	[Veh.	Dist J	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	ft				mph
South: Ea	st Site	Driveway													
3	L2	All MCs	4	2.0	4	2.0	0.072	3.9	LOS A	0.4	10.0	0.39	0.22	0.39	23.4
		LV	4		4		0.072	3.8	LOS A	0.4	10.0	NA	NA	NA	23.4
		HV	0		0		0.072	7.6	LOS A	0.4	10.0	NA	NA	NA	22.6
8	T1	All MCs	69	2.0	69	2.0	0.072	3.9	LOS A	0.4	10.0	0.39	0.22	0.39	23.2
		LV	68		68		0.072	3.8	LOS A	0.4	10.0	NA	NA	NA	23.3
		HV	1		1		0.072	7.6	LOS A	0.4	10.0	NA	NA	NA	22.2
18	R2	All MCs	4	2.0	4	2.0	0.072	3.9	LOS A	0.4	10.0	0.39	0.22	0.39	23.5
		LV	4		4		0.072	3.8	LOS A	0.4	10.0	NA	NA	NA	23.6
		HV	0		0		0.072	7.6	LOS A	0.4	10.0	NA	NA	NA	22.7
Approach			78	2.0	78	2.0	0.072	3.9	LOS A	0.4	10.0	0.39	0.22	0.39	23.3
East: Mas	sey Ch	apel Road													
1	L2	All MCs	8	2.0	8	2.0	0.151	4.3	LOS A	0.9	23.6	0.31	0.13	0.31	30.2
		LV	8		8		0.151	4.2	LOS A	0.9	23.6	NA	NA	NA	30.3
		HV	0		0		0.151	7.7	LOS A	0.9	23.6	NA	NA	NA	28.9
6	T1	All MCs	12	2.0	12	2.0	0.151	4.3	LOS A	0.9	23.6	0.31	0.13	0.31	30.7
		LV	12		12		0.151	4.2	LOS A	0.9	23.6	NA	NA	NA	30.7
		HV	0		0		0.151	7.7	LOS A	0.9	23.6	NA	NA	NA	29.3
16	R2	All MCs	159	2.0	159	2.0	0.151	4.3	LOS A	0.9	23.6	0.31	0.13	0.31	29.5
		LV	156		156		0.151	4.2	LOS A	0.9	23.6	NA	NA	NA	29.5
		HV	3		3		0.151	7.7	LOS A	0.9	23.6	NA	NA	NA	27.9
Approach			179	2.0	179	2.0	0.151	4.3	LOS A	0.9	23.6	0.31	0.13	0.31	29.6
North: Ma	ssey C	hapel Road	l (Realigned)												
7	L2	All MCs	159	2.0	159	2.0	0.236	4.6	LOS A	1.6	40.3	0.16	0.04	0.16	28.1
		LV	156		156		0.236	4.5	LOS A	1.6	40.3	NA	NA	NA	28.1

		HV	3		3		0.236	7.9	LOS A	1.6	40.3	NA	NA	NA	26.7
4	T1	All MCs	114	2.0	114	2.0	0.236	4.6	LOS A	1.6	40.3	0.16	0.04	0.16	28.6
		LV	112		112		0.236	4.5	LOS A	1.6	40.3	NA	NA	NA	28.6
		HV	2		2		0.236	7.9	LOS A	1.6	40.3	NA	NA	NA	27.1
14	R2	All MCs	28	2.0	28	2.0	0.236	4.6	LOS A	1.6	40.3	0.16	0.04	0.16	28.4
		LV	27		27		0.236	4.5	LOS A	1.6	40.3	NA	NA	NA	28.4
		HV	1		1		0.236	7.9	LOS A	1.6	40.3	NA	NA	NA	26.9
Approach			301	2.0	301	2.0	0.236	4.6	LOS A	1.6	40.3	0.16	0.04	0.16	28.3
West: Mas	ssey C	hapel Road													
5	L2	All MCs	18	2.0	18	2.0	0.031	3.9	LOS A	0.2	4.3	0.47	0.27	0.47	28.3
		LV	17		17		0.031	3.8	LOS A	0.2	4.3	NA	NA	NA	28.3
		HV	0		0		0.031	8.1	LOS A	0.2	4.3	NA	NA	NA	26.5
2	T1	All MCs	9	2.0	9	2.0	0.031	3.9	LOS A	0.2	4.3	0.47	0.27	0.47	29.9
		LV	9		9		0.031	3.8	LOS A	0.2	4.3	NA	NA	NA	29.9
		HV	0		0		0.031	8.1	LOS A	0.2	4.3	NA	NA	NA	28.4
12	R2	All MCs	4	2.0	4	2.0	0.031	3.9	LOS A	0.2	4.3	0.47	0.27	0.47	29.7
		LV	4		4		0.031	3.8	LOS A	0.2	4.3	NA	NA	NA	29.8
		HV	0		0		0.031	8.1	LOS A	0.2	4.3	NA	NA	NA	28.2
Approach			31	2.0	31	2.0	0.031	3.9	LOS A	0.2	4.3	0.47	0.27	0.47	29.0
All Vehicle	es		589	2.0	589	2.0	0.236	4.3	LOS A	1.6	40.3	0.25	0.11	0.25	27.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA HCM.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Monday, October 7, 2024 11:27:19 AM Project: K:\DUR_LDEV\Massey Chapel - Patel\T4 - Analysis\Sidra\Massey Chapel @ Site Driveway.sip9

	-	7	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ħ			ŧ	Y		
Traffic Volume (vph)	8	0	27	8	0	17	
Future Volume (vph)	8	0	27	8	0	17	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Satd. Flow (prot)	1863	0	0	1794	1611	0	
Flt Permitted				0.963			
Satd. Flow (perm)	1863	0	0	1794	1611	0	
Link Speed (mph)	35			35	25		
Link Distance (ft)	533			475	510		
Travel Time (s)	10.4			9.3	13.9		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	9	0	0	39	19	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	0			0	12		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized	ł						
Intersection Capacity Utiliz	ation 18.6%			IC	U Level	of Service	A :
Analysia Daviad (min) 15							

Analysis Period (min) 15

Intersection

Int Delay, s/veh

Int Delay, s/veh	5.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ţ,			÷	Y		
Traffic Vol, veh/h	8	0	27	8	0	17	
Future Vol, veh/h	8	0	27	8	0	17	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	9	0	30	9	0	19	

Major/Minor	Maia	-1		(laiar)		Minor ⁴	
	iviajoi			viajor2		winor 1	
Conflicting Flow All		0	0	9	0	78	9
Stage 1		-	-	-	-	9	-
Stage 2		-	-	-	-	69	-
Critical Hdwy		-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1		-	-	-	-	5.42	-
Critical Hdwy Stg 2		-	-	-	-	5.42	-
Follow-up Hdwy		-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver		-	-	1611	-	925	1073
Stage 1		-	-	-	-	1014	-
Stage 2		-	-	-	-	954	-
Platoon blocked, %		-	-		-		
Mov Cap-1 Maneuver		-	-	1611	-	907	1073
Mov Cap-2 Maneuver		-	-	-	-	907	-
Stage 1		_	-	-	-	1014	-
Stage 2		-	-	-	-	936	-
olago L							
Approach	E	В		WB		NB	
HCM Control Delay, s/	v	0		5.6		8.4	
HCM LOS						А	
Minor Lane/Major Mvm	nt	NB	SLn1	EBT	EBR	WBL	WBI
Capacity (veh/h)		1	073	-	-	1611	-
HCM Lane V/C Ratio		0.	.018	-	-	0.019	-
HCM Control Delay (s/	veh)		8.4	-	-	7.3	0
HCM Lane LOS			Α	-	-	Α	Α
HCM 95th %tile Q (veh	ו)		0.1	-	-	0.1	-

(+) 12"

ASC/2 TIMING CHART													
ASU	/3 111	ING CF	IAR I										
		Pł	HASE										
FEATURE	2	4	6	8									
Min Green *	12	7	12	7									
Walk *	-	-	_	_									
Ped Clear	-	-	-	-									
Veh. Extension *	6.0	2.0	6.0	2.0									
Max 1 *	90	20	90	20									
Yellow	4.6	3.8	4.6	4.1									
Red Clear	1.5	2.6	1.5	2.0									
Actuations B4 Add *	-	-	-	_									
Seconds /Actuation *	2.5	-	2.5	-									
Max Initial *	34	-	34	-									
Time Before Reduction *	20	-	20	_									
Time To Reduce *	40	_	40	_									
Minimum Gap	3.0	-	3.0	-									
Locking Detector	Х	-	Х	_									
Recall Position	VEH RECALL	-	VEH RECALL	-									
Dual Entry	-	Х	-	Х									
Simultaneous Gap	Х	Х	Х	Х									

* These values may be field adjusted. Do not adjust Min Green and Extension times for phases 2 and 6 lower than what is shown. Min Green for all other phases should not be lower than 4 seconds.

	ASC/3 DETECTOR INSTALLATION CHART														
	DETE	ECTOR				F	PROGRA	AMMINO	à	_					
LOOP⁄ ZONE NO.	SIZE (FT)	DISTANCE FROM STOPBAR (FT)	CE A AR TURNS		PHASE	CALLING	EXTEND TIME	DELAY TIME	USE ADDED INITIAL	ТҮРЕ	SYSTEM LOOP	NEW CARD			
2A	6X6	300	4	-	2	Yes	-	-	Х	Ν	-	-			
2B	6X40	0	2-4-2	-	2	Yes	-	3	_	G	-	-			
4A *	6X40	0	*	-	4	Yes	-	5	-	S	-	-			
6A	6X6	300	5	-	6	Yes	-	-	Х	Ν	-	-			
6B	6X40	0	2-4-2	-	6	Yes	-	3	-	G	-	-			
8 A	6X40	+5	2-4-2	-	8	Yes	-	5	-	S	-	-			
8B	6X15	+15	3	-	8	Yes	_	15	_	S	_	-			

***** Video Detection Zone

Y)12

ITS & Si

Signal Prepared for

			_	PROJECT REFERENCE NO.	SHEET NO.
			2 Phase	36249.3873	Sig 5.0
		Ful	lv Actuated		
		(Durham	Signal System)		
			NOTES		
	1.	Refer to "	Roadway Standard Dro	awings	
		"Standard	Specifications for F	Roads	
	0	and Struct	ures" dated January	2018.	
	۷.	flashing c	pperation unless othe	erwise	
	7	directed b	y the Engineer.		
	3.	mode.	etector units to pres	sence	
	4.	Pavement m	narkings are existing	j.	
	• 0	are for fr	ree-run operation on	ly.	
		Coordinate	ed signal system tim porsodo those values	ing	
	6.	Install ne	ew ASC/3 software in		
	7.	existing c A video im	abinet. Maging loop emulator		
		detection	system is used to pr	-ovide	
		traffic de	etection on some appr on this plan. Perform	roaches m	
		installati	on according to the		
		manufactur enaineer-c	er's directions and approved mountina loo	NCDOT cations	
		to accompl	ish the detection so	chemes	
		shown on t	he plan.		
			LEGEND		
		PROPOSED	т сс. с	EXISTING	
			Sign		
			Inductive Loop Detect	or ()	
			Junction Box		
			2-in Underground Condu	lit	
		\rightarrow N/A	Right of Way Directional Arrow	\rightarrow	
		0	Metal Pole with Masta	rm O	
		\bigcirc	Video Detector		
		$\langle A \rangle$	Street Name Sian (D3)	−1) (A)	
			5	\bigcirc	
+ of Toop		ion			
on of High	hwavs	TOU			
rawing Date:	10/8/201	8			
	ed by:			VHB Engineering NC, F 940 Main Campus Driv	^v .C. (C-3705) 'e, Suite 500
ignals Un Press	274A494			Raleigh, NC 27 P: 919-829-03	606 328
]		DOCUMENT NOT C	
Upgrade	~ ~ ~	4440 / -		FINAL UNLES SIGNATURES CC	>S ALL MPLETED
or the Offices of: Sillity and S- NORTH S-S-	SR	1118 (Fa	yetteville Road) SEAL	
	SR 1	106 (Mas	sey Chapel Road) UAR	U/
* NUSION		[North I	ntersection]	· SEAL	
PF TRANSPORT	Division Plan date:	5 Durhar August 2018	n County Du REVIEWED BY: J.L. Lewi	rham is	
Pkwy,Garner,NC 27529	9 PREPARED BY:	J. Ma	REVIEWED BY: M. L. Styg]	Les Dott	amananan
0 40		REVISIUNS	INII• [JAIL Joeph L. Lewis BODIEA08823621F	8/9/2018
1 "=40'				SIG. INVENTORY NO.	DATE 05-1431

GRAM	DEFAULT PHASING	ALTERNATE PHASING)	ASC/3 DETECTOR INSTALLATION CHART									
	TABLE OF OPERATION	TABLE OF OPERATIO	N	DETE	ECTOR			PRC	GRAM	IING			
	PHASE SIGNAL Ø Ø Ø Ø F FACE 1 1 2 2 4 L FACE + + + + + + S	PHASE SIGNAL Ø	F LOOP	SIZE (FT)	DISTANCE FROM STOPBAR (FT)	TURNS	AH4 COO	CALLING	EXTEND TIME	DELAY TIME	USE ADDED INITIAL	ТҮРЕ	SYSTEM LOOP NEW CARD
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	H - → 1A	6X40	0	2-4-2	X 1	Yes # Yes		15 * 3	-	S G	- X - X
	21, 22 R R G G R Y	21, 22 R R G G R	Y 1B	6X40	0	2-4-2	X 1	Yes	_	15	_	S	- X
	41 R R R R G R	41 R R R G	R 2A	6X6	300	4	X 2	Yes	_	_	Х	N	- X
	42 R R R G R	42 R R R G	R 4A	6X40	0	2-4-2	X 4	Yes	_	3	_	S	- X
	51 $ -$	51 - R - R R	- - Y 5A	6X40	0	2-4-2	X 5	Yes # Yes	_	15 *	-	S	- X - X
	61,62 R G R G R Y	61,62 R G R G R	Υ 5B	6X40	0	2-4-2	X 5	Yes	_	15	_	S	- X
			R 5C	6X6	0	3	X 5	Yes	_	15	-	S	- X
			R 6A	6X6	260	4	X 6	Yes	_	-	Х	Ν	- X
	P21, P22 DW DW W W DW DRK	P21, P22 DW DW W W DW	DRK 8A	6X40	0	2-4-2	X 8	Yes	_	3	-	S	- X
4+8			# Redu	uce delay Ible Phase	to 3 secc calls for <u>SI</u>	onds durin loops duri <u>GNAL</u>	ing Alterr ing Alter FAC	nate Ph mate P <u>E I</u>	asing O hasing (<u>D</u> .	peration Operatio	n.		
	Point of the second sec	HOW SA 1192 (Massey Chapel Ro			1 2 " 21 61	R Y 12″ G ., 22 41 ., 62 81	L Y G	R 42 82	12	" P21 P41	, P22 , P42	16″	
SR 1118 (Fayet	Sidewalk teville Road) 45 MPH -1% Grade Sidewalk	A 81 82 A 8	45 MPH +1% Gr	rade 		 ♪ √)		/			R() 	w	
		ren's Cam)riveway 1 +2% Gra											

0.01	0:0		
PROJECT	REFERENCE N	ΝΟ.	SHEE
	PROJECT	PROJECT REFERENCE I	PROJECT REFERENCE NO.

